

SHENZHEN CLOUDCHILD TECHNOLOGY CO., LTD

具有 PWM 调光功能的 5~500mA 可编程低压 差线性恒流恒功率 LED 驱动器

CC-INK1103

产品描述

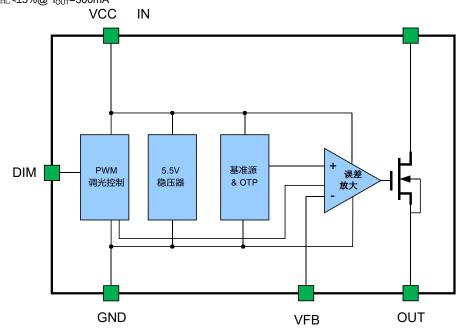
CC-INK1103 是一款 LED 线性恒流恒功率驱动芯片,提供单通道恒定输出电流,电流输出范围从 5~500mA,电流数值可以通过外接电阻 (R_{FB})进行设定,输出端可承受最大电压达 32V。芯片的工作电压范围为 3.3~5.5V。低至 0.3V 的电流设定电压以及 200mV 低饱和压降驱动级,使得 CC-INK1103 能够在宽驱动电压范围内提供稳定的电流输出,极大增强恒流灯条模组的级联能力。CC-INK1103 外围元件少,应用可靠性好,芯片内部包含高精度的带隙基准源,5.5V 稳压器,过温保护电路和低压差驱动电路等等。

芯片还提供了输出端使能控制引脚 DIM,该引脚内部具有上拉电阻,在不需要使用使能引脚的情况下,该引脚悬空,默认输出恒流。用户也可以采用 5V 逻辑通过该引脚对输出电流进行调光控制,实现高质量的 PWM 调光,例如,与 INK1003 配合使用作为大功率恒流驱动器。

CC-INK1103 内建温度感应器与过热保护功能。芯片内部的温度感应器可侦测 CC-INK1103 的温度状态,当 CC-INK1103 芯片内部温度超过 150℃时,

过温保护电路会启动,关断恒流输出,当芯片内部结温低于 130°C 时,恒流输出会重新打开。

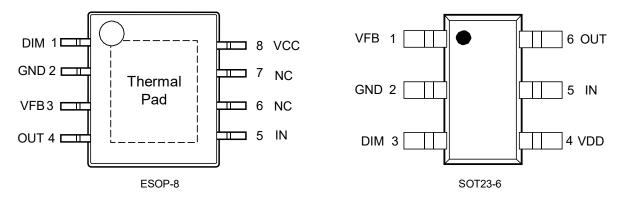
CC-INK1103 采用 ESOP8 和 SOT23-6 小体积封装,适合高品质的 LED 模组和灯条应用,其使用温度范围为-40~85°C


特征及优点

- ▶ 恒流输出值不受输出端负载电压影响
- ◆ 最大恒流输出范围值: 500mA
- ◆ 利用一个外接电阻,可调整电流输出值 (5~500mA)
- ◆ I_{cc} 电流低,仅为 500uA,有助于提高灯具光效
- ◆ 内置过热保护电路 (OTP)
- ◆ 输出端最小过驱动电压: 0.5V@I_{OUT}=350mA
- ◆ 输出耐压达 32V ,可以用于 24V 灯条 PWM 调光,不 调光 灯条最高电压可到 48V
- ◆ 芯片间电流失配<±5%@ I_{out}=300mA

应用

- ◆ 激光模组
- ◆ LED 驱动器


内部框图

订货信息

Part No.	封装	备注
CC-INK1103ST	SOT23-6	SOT23-6(3000 片/卷)
CC-INK1103SO	ESOP8	ESOP8(3000 片/卷)

管脚排布

管脚名	序号	功能
DIM	1	PWM 调光控制,内置 20K 上拉电阻,如果不需要调光可以悬空
GND	2	地
VFB	3	LED 驱动电流设定端,设定电压为 0.3V
DRV	4	LED 驱动电流沉
VCC	5	IC 电源

极限参数

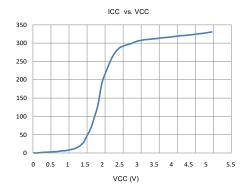
参数	符号	参数值	单位
VCC	VCC	-0.3~5.8	V
DIM 管脚电压	V _{DIM}	-0.3~VCC+0.3	V
VFB 管脚电压	V _{FB}	-0.3~6	V
IN 驱动电流输入管脚电压	V _{IN} . I _{LED} =0	-0.3~32	V
OUT 驱动电流输出管脚电压	V _{OUT} , I _{LED} =0	-0.3~5	V
持续输出电流	Іоитс	500	mA
热阻(ESOP8,晶体管结到管脚)	R _{th (j-s) 2} (ESOP8)	45	°C/W
然性(EOOI O,相体自知到自M/	R _{th (j-s) 2} (SOT23-6)	150	°C/W
最大功耗	P(DMAX1) (ESOP8)	1200	mW
以八为作	P(DMAX2) (SOT23-6)	500	mW
工作环境温度范围	T _A	-40~85	°C
工作结温	T _J	160	°C
存储温度	T _{STG}	-55~150	°C
ESD (HBM)	ESD(HBM)	6000	V

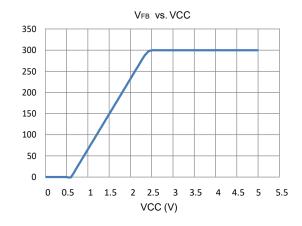
注意: 超过器件的极限参数可能会导致器件永久损坏,长时间放置于超过极限条件的环境之下可能会降低器件的可靠性。

电气参数(VIN=12V @ 25°C 室温,除非另行规定)

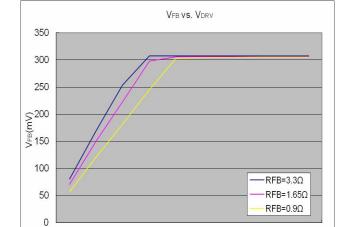

参数	符号	条件	最小	典型	最大	单位
电源电压范围	V _{cc}	无限流电阻	3.3	-	5.7	V
稳压器稳压	V _{CC}	R1=5K	5.3	5.5	5.7	V
静态电流	I _{cc}	DIM 悬空,VCC=5V,R _{FB} =5Ω, V _{DRV} =2V	-	400	600	uA
	V_{DIMH}		0.7V _{CC}	-	-	V
DIM 逻辑电平	V_{DIML}		-	-	0.3V _{CC}	V
	V_{DIMH}		-	0.1V _{CC}	-	V
输出电流	I _{OUTH}	R _{FB} =5Ω,DIM 悬空,V _{DRV} =6V	57	60	63	mA
机口电机	I _{OUTL}	R _{FB} =5Ω,DIM 接地,V _{DRV} =6V	-	-	0.1	uA
输出饱和压降	V _{SAT}	I _{OUT} =120mA	-	0.05	0.2	V
电流设定电压	V _{FB}	V_{DRV} =2V, RFB=5 Ω	285	300	315	mV
输出电流线性调整率	%/dV _{cc}	$R_{FB}=5\Omega$, $V_{DRV}=2V$, $V_{CC}=3.3\sim5.5V$	-	0.1	0.3	%
输出电流负载调整率	%/dV _{DRV}	R _{FB} =5Ω,DIM 悬空,V _{DRV} =0.4~5V	-	0.1	0.3	%
过温保护触发温度①	T _{OTP}		-	150	-	°C
过温保护释放温度①	T_{OTPR}		-	130	-	°C

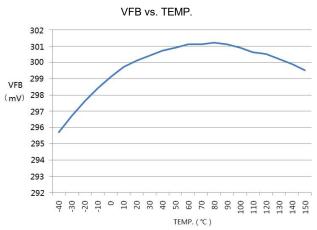
注意:


① ,由设计保证,而非实际测试值。 开关特性

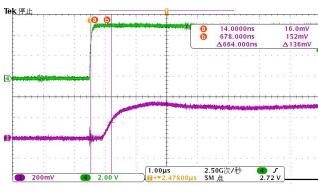

(VCC=5V @ 25°C 室温, 除非另行规定)

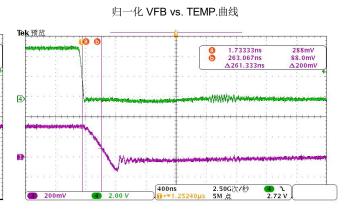
参数		符号	测试条件	最小	典型	最大	单位
延迟时间(低电位到高电位)	DIM-VFB	t _{pLH}		0.2	0.5	1	uS
延迟时间(高电位到低电位)	DIM-VFB	t _{pHL}	V _{CC} =5V;	0.05	0.1	0.2	uS
DIM 脉冲宽度	DIM	t _{w (OE)}	V _{DRV} =2V;	1.5	-	-	uS
电流输出端电流爬升时间]	t _R	R _{FB} =5Ω	0.1	0.2	0.4	uS
电流输出端电流下降时间	1	t _F		0.1	0.2	0.4	uS


特性曲线和波形

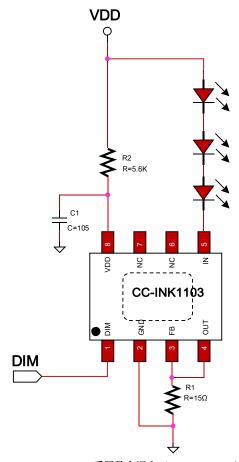


 $V_{\text{FB}} \ \text{vs.} \ VCC$

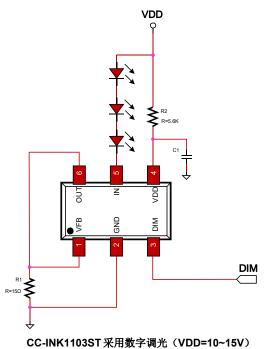




0.1 0.2 0.3


0.7

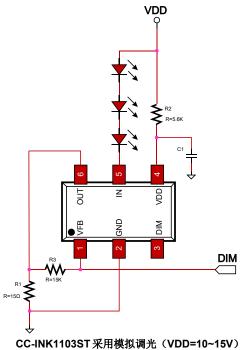
0.8 0.9



 t_{pLH} 测试 t_{pHL} 测试

CC-INK1103SO 采用数字调光(VDD=10~15V)

VDD

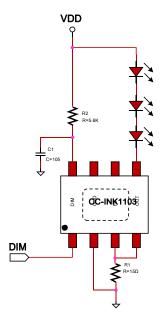

R2
R=5.6K

C1
C=106

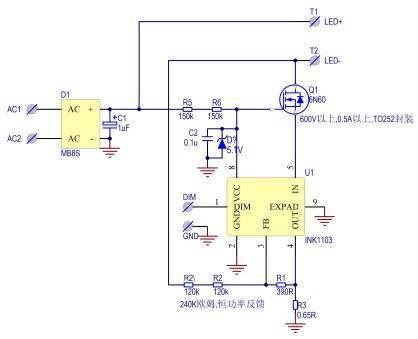
CC-INK1103

R3
R=1.50

CC-INK1103SO 采用模拟调光(VDD=10~15V)


注意:

12V 和 24V 应用电路中,IC 的功耗大,发热量较高,建议采用铝基板做为 PCB 基材。


典型应用

当 CC-INK1103 应用于 LED 恒流灯条模组时,可采用如下应用电路,芯片仅需一个外挂电阻 RFB 对电流进行设置,电阻 R1 可以增强 LED 灯条 的可靠性,避免灯条在热拔插,电源反接等异常情况下灯具损坏,同时降低在高压应用环境下 IC 自身的功耗,提升产品的可靠性。

CC-INK1103 采用 0.3V 的低反馈电压,在 LED 电流通路上直接设定 LED 电流,再配合内部的低导通电阻 MOS 开关,在输出 500mA 的情况下, 最低的 DRV 管脚的电压只需要 0.5V,能够最大限度增加 LED 模组灯条的串联数量并保持亮度的一致性,从而降低工程施工的难度。对于高端需要调光的 LED 产品,CC-INK1103 预留了 DIM 调光功能,能够使用 PWM 数字方式和模拟方式对 LED 进行调光。

具有PWM 调光功能的恒流LED 光源典型应用电路

AC 200V 输入 50W 恒功率应用电路

电压调整器

CC-INK1103 工作在 12V, 24V 甚至更高电压下,只需要一个电阻 R2 和电容 C1 即可。电阻 R2 可以保证 LED 灯具在电压异常,反接的情况下都不会损坏。

R1 的选型如下:

应用电压	R2	备注
5V	151	-
12V	10K	-
24V	20K	-
36V	30K	-

LED 驱动电流设定

CC-INK1103 的输出电流值由外挂电阻来设定,外挂电阻应连接于接地端(GND)与电流设定端(VFB)之间,反馈电压为 0.3V。通过 外挂电阻值的调整可以设定输出电流的大小,最高可达 500mA。输出电流值可透过下列等式来概算:

$$I_{LED}=V_{FB}/R_{FB}$$

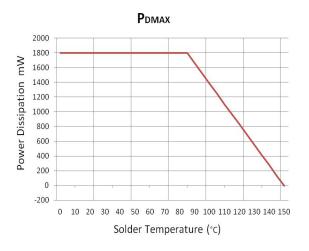
其中 V_{FB} 为 CC-INK1103 恒流参考设定电压,典型值为 300mV, R_{FB} 为芯片 V_{FB} 管脚与地之间的电流设定电阻,当 LED 驱动电流为 500 时,

R_{FB}应该选取 0.6 欧姆, 精度 1%的电阻。

PWM LED 亮度控制

CC-INK1103 的 DIM 引脚为芯片的 PWM 调光接口,该接口内置 10K 欧姆的上拉电阻,非常方便与 PWM 控制器配合生产大功率可调光 LED

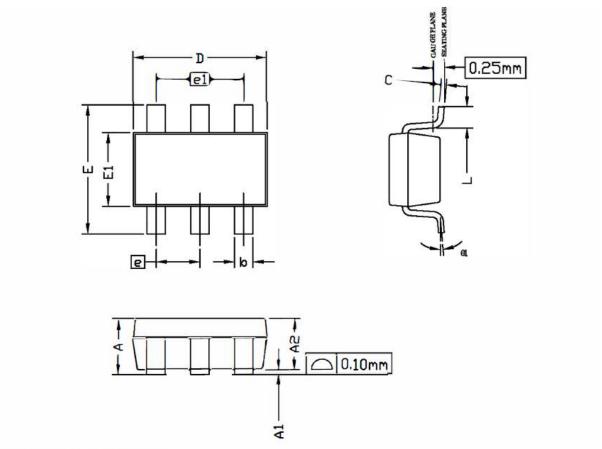
灯具。当 DIM 的端的电压上拉为 VCC 电平或者悬空时,驱动口打开,DIM 端拉底时,驱动口关闭,LED 电流为 0。 如果不需要调光功能,DIM 引脚可以悬空。在采用 DIM 功能的时候建议在 DIM 脚串联一个 100 欧姆电阻再接入 PWM 控制信号。

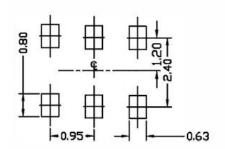

封装体散热功率

CC-INK1103 封装体的最大散热功率由以下公式

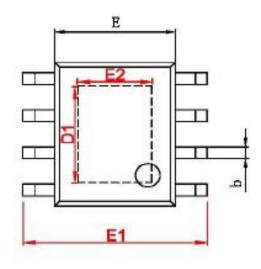
决定:

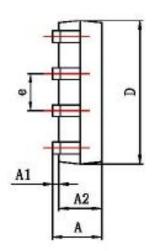
 $P_{D(MAX)}=(T_j-T_S)/R_{th}$

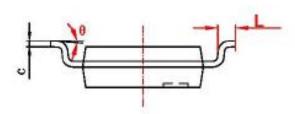

当 CC-INK1103 驱动通道打开时,真正的功率为 PD_(act)=I_{CC}×V_{CC}+(I_{OUT}×(V_{DRV}-V_{FB}))为保持 P_{D(act)}≦ P_{D(MAX)}可输出的最大电流与 V_{DRV} 电压的关系为: I_{OUT}=((T_I-T_S)/R_{th} ∪_{FS} -(I_{CC}×V_{CC}))/V_{DRV}


如果采用面积较大的铝基板,可进一步降低封装的热阻,提升芯片的最大输出电流。

封装信息


以下尺寸的单位为毫米(mm) S0T23-6 封装信息:




RECOMMENDED LAND PATTERN

	DOMENT	TONS INMILL	METERS	DIM	ENSIONS IN IN	CHES
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.90	_	1.25	0.035		0.049
A1	0.00		0.15	0.00	_	0.006
A2	0.70	1.10	1.20	0.028	0.043	0.047
ь	0.30	0.40	0.50	0.012	0.016	0.020
С	0.08	0.13	0.20	0.003	0.005	0.008
D	2.70	2.90	3.10	0.106	0.114	0.122
E	2.50	2.80	3.10	0.098	0.110	0.122
EI	1.50	1.60	1.70	0.059	0.063	0.067
e		0.95 BSC-			0.037BSC	
el		1.90 BSC.			0.075 BSC	
L	0.30		0.60	0.012	_	0.024
θ1	00		80	00	_	80

字符	Dimensions I	n Millimeters	Dimension	s In Inches
	Min	Max	Min	Max
Α	1.350	1. 750	0.053	0.069
A1	0, 050	0.150	0.002	0,006
A2	1. 350	1.550	0.053	0.061
b	0, 330	0.510	0.013	0.020
o	0.170	0. 250	0.007	0.010
D	4. 700	5. 100	0.185	0.200
D1	3. 202	3. 402	0.126	0.134
E	3. 800	4.000	0.150	0.157
E1	5. 800	6. 200	0.228	0.244
E2	2. 313	2.513	0.091	0.099
e	1.27	0 (BSC)	0.05	O (BSC)
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°